IPPTChap003_rev_6th_ed_MDOforstudents.pptx

1

Innovating in India:
The Chotukool Project
In rural India up to 90% of families cannot afford appliances, have no electricity, and have no refrigeration.
Appliance manufacturer Godrej & Boyce decided to make a smaller, cheaper refrigerator to tap this market.
Many of their assumptions turned out to be wrong; they ended up making a lightweight portable battery-operated refrigerator with customizable skins to make them cool and aspirational, and sold to multiple market segments, including the urban affluent.
Godrej & Boyce also pioneered a novel distribution system: the Chotukool would be sold at the post office.
The Chotukool won several design awards and FastCompany gave Godrej its “Most Innovative Company” award.

Chotukool Video

Innovating in India:
The Chotukool Project 2
Discussion Questions:
What were the pros and cons of attempting to develop a refrigerator for India’s rural poor?
What product and process innovations did the Chotukool entail? Would you consider these incremental or radical? Architectural or component? Competence enhancing or competence destroying?
Did the Chotukool pose a threat of disrupting the traditional refrigerator market? Why or why not?
Is there anything you think Godrej should have done differently to penetrate the market of rural poor families in India?
What other products might the lessons Godrej learned with Chotukool apply to?

Chapter 3
Types and Patterns of Innovation

5

Overview
Several dimensions are used to categorize innovations.
These dimensions help clarify how different innovations offer different opportunities (and pose different demands) on producers, users, and regulators.
The path a technology follows through time is termed its technology trajectory.
Many consistent patterns have been observed in technology trajectories, helping us understand how technologies improve and are diffused.

3-5

6

6

Types of Innovation
Product versus Process Innovation
Product innovations are embodied in the outputs of an organization – its goods or services.
Process innovations are innovations in the way an organization conducts its business, such as in techniques of producing or marketing goods or services.
Product innovations can enable process innovations and vice versa.
What is a product innovation for one organization might be a process innovation for another
E.g., UPS creates a new distribution service (product innovation) that enables its customers to distribute their goods more widely or more easily (process innovation)
3-6

7

7

Types of Innovation
Radical versus Incremental Innovation
The radicalness of an innovation is the degree to which it is new and different from previously existing products and processes.
Incremental innovations may involve only a minor change from (or adjustment to) existing practices.
The radicalness of an innovation is relative; it may change over time or with respect to different observers.
E.g., digital photography a more radical innovation for Kodak than for Sony.
3-7

8

8

Types of Innovation
Competence-Enhancing versus Competence-Destroying Innovation
Competence-enhancing innovations build on the firm’s existing knowledge base
E.g., Intel’s Pentium 4 built on the technology for Pentium III.
Competence-destroying innovations renders a firm’s existing competencies obsolete.
E.g., electronic calculators rendered Keuffel & Esser’s slide rule expertise obsolete.
Whether an innovation is competence enhancing or competence destroying depends on the perspective of a particular firm.
3-8

9

9

This Photo by Unknown Author is licensed under CC BY-SA

10

Types of Innovation
Architectural versus Component Innovation
A component innovation (or modular innovation) entails changes to one or more components of a product system without significantly affecting the overall design.
E.g., adding gel-filled material to a bicycle seat
An architectural innovation entails changing the overall design of the system or the way components interact.
E.g., transition from high-wheel bicycle to safety bicycle.
Most architectural innovations require changes in the underlying components also.

3-9

11

11

Technology S-Curves
Both the rate of a technology’s improvement, and its rate of diffusion to the market typically follow an s-shaped curve.
S-curves in Technological Improvement

Technology improves slowly at first because it is poorly understood.
Then accelerates as understanding increases.
Then tapers off as approaches limits.
3-10

12

12

Moore’s Law

13

Technology S-Curves 2
Technologies do not always get to reach their limits.
May be displaced by new, discontinuous technology.
A discontinuous technology fulfills a similar market need by means of an entirely new knowledge base.
For example, switch from carbon copying to photocopying, or vinyl records to compact discs.
Technological discontinuity may initially have lower performance than incumbent technology.
For example, first automobiles were much slower than horse-drawn carriages.
Firms may be reluctant to adopt new technology because performance improvement is initially slow and costly, and they may have significant investment in incumbent technology.

Keep in mind that Moore’s law is observation that the number of transistors in a VLSI doubles approximately every two years.
15

Technology S-Curves
Introduction of Discontinuous
Technology

17

Technology S-Curves 3
S-Curves in Technology Diffusion.
Adoption is initially slow because the technology is unfamiliar.
It accelerates as technology becomes better understood.
Eventually market is saturated and rate of new adoptions declines.
Technology diffusion tends to take far longer than information diffusion.
Technology may require acquiring complex knowledge or experience.
Technology may require complementary resources to make it valuable (for example, cameras not valuable without film).

Technology S-Curves 4
S-Curves as a Prescriptive Tool.
Managers can use data on investment and performance of their own technologies or data on overall industry investment and technology performance to map s-curve.
While mapping the technology’s s-curve is useful for gaining a deeper understanding of its rate of improvement or limits, its use as a prescriptive tool is limited.
True limits of technology may be unknown.
Shape of s-curve can be influenced by changes in the market, component technologies, or complementary technologies.
Firms that follow s-curve model too closely could end up switching technologies too soon or too late.

Figures 3.8 Trajectories of Technology
Improvement and Customer Requirements
and 3.9 Low-End Technology’s Trajectory
Intersects Mass Market Trajectory

Technology S-Curves 5
S-curves of diffusion are in part a function of s-curves in technology improvement.
Learning curve leads to price drops, which accelerate diffusion.

Source: Consumer Electronics Association.

Research Brief

Diffusion of Innovation and Adopter Categories
Everett M. Rogers created a typology of adopters:
Innovators are the first 2.5% of individuals to adopt an innovation. They are adventurous, comfortable with a high degree of complexity and uncertainty, and typically have access to substantial financial resources.  
Early Adopters are the next 13.5% to adopt the innovation. They are well integrated into their social system and have great potential for opinion leadership. Other potential adopters look to early adopters for information and advice, thus early adopters make excellent “missionaries” for new products or processes.  
Early Majority are the next 34%. They adopt innovations slightly before the average member of a social system. They are typically not opinion leaders, but they interact frequently with their peers.
Late Majority are the next 34%. They approach innovation with a skeptical air and may not adopt the innovation until they feel pressure from their peers. They may have scarce resources.
Laggards are the last 16%. They base their decisions primarily on past experience and possess almost no opinion leadership. They are highly skeptical of innovations and innovators and must feel certain that a new innovation will not fail prior to adopting it.
3-15

22

22

Research Brief

Diffusion of Innovation
and Adopter Categories
3-16

23

23

Theory In Action
“Segment Zero” – A serious threat to Microsoft?
Technologies often improve faster than customer
requirements demand
This enables low-end technologies to eventually meet the
needs of the mass market.

3-17

24

Theory in Action, cont’d
From 1980 to 2011, Microsoft was the dominant personal computer operating system. However, operating systems for smartphones and tablets were improving to the point where they could replace many personal computer functions.
In 2015, Apple’s iPhone operating system and Google’s Android collectively controlled over 90% of the market for smartphone purchases. Microsoft’s Windows Phone held a share of only 3%.
As tablets based on these systems became fully functional computers, would Microsoft’s dominance evaporate?
3-18

25

Technology Cycles
Technological change tends to be cyclical:
Each new s-curve ushers in an initial period of turbulence, followed by rapid improvement, then diminishing returns, and ultimately is displaced by a new technological discontinuity.
Utterback and Abernathy characterized the technology cycle into two phases:
The fluid phase (when there is considerable uncertainty about the technology and its market; firms experiment with different product designs in this phase)
After a dominant design emerges, the specific phase begins (when firms focus on incremental improvements to the design and manufacturing efficiency).
3-19

27

27

Technology Cycles
Anderson and Tushman also found that technological change proceeded cyclically.
Each discontinuity inaugurates a period of turbulence and uncertainty (era of ferment) until a dominant design is selected, ushering in an era of incremental change.

3-20

28

28

Technology Cycles
Anderson and Tushman found that:
A dominant design always rose to command the majority of market share unless the next discontinuity arrived too early.
The dominant design was never in the same form as the original discontinuity but was also not on the leading edge of technology. It bundled the features that would meet the needs of the majority of the market.
During the era of incremental change, firms often cease to invest in learning about alternative designs and instead focus on developing competencies related to the dominant design.
This explains in part why incumbent firms may have difficulty recognizing and reacting to a discontinuous technology.
3-21

29

29

Chapter 3 Summary
Different dimensions
S- shape curve of technology performance/cumulative effort
S- shape curve of technology market performance
Rate at which technology improves
Technology change often follows a cyclical pattern
First design rarely becomes dominant
Dominant design rarely uses the most advanced features

30

Discussion Questions
What are some of the reasons that established firms might resist the adoption of a new technology?
Are well-established firms or new entrants more likely to a) develop and/or b) adopt new technologies? What are some reasons for your choice?
Think of an example of an innovation you have studied at work or school. How would you characterize it on the dimensions described at the beginning of the chapter?
What are some of the reasons that both technology improvement and technology diffusion exhibit s-shaped curves?
3-22

31

31

Discussion Questions
5. Why do technologies often improve faster than customer requirements? What are the advantages and disadvantages to a firm of developing a technology beyond the current state of market needs?
6. Are some industries in which you would expect to see particularly short technology cycles? Are some industries in which you would expect to see particularly long technology cycles? What might be some of the factors that influence the length of technology cycles in an industry?

3-22

32

32

Place your order
(550 words)

Approximate price: $22

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more
error: Content is protected !!
Open chat
1
You can contact our live agent via WhatsApp! Via + 1 929 473-0077

Feel free to ask questions, clarifications, or discounts available when placing an order.

Order your essay today and save 30% with the discount code GURUH